一 概述
1 2 3
| 1.二叉树先序遍历思想 2.二叉树先序过程分析 3.示例代码
|
二 二叉树先序遍历思想
1 2 3 4
| 二叉树先序遍历的实现思想是: 1.访问根节点; 2.访问当前节点的左子树; 3.若当前节点无左子树,则访问当前节点的右子树;
|
图示

三 二叉树先序过程分析
3.1 分析过程
1 2 3 4 5 6 7 8 9 10 11 12 13 14
| 以图 1 为例,采用先序遍历的思想遍历该二叉树的过程为: 1.访问该二叉树的根节点,找到 1; 2.访问节点 1 的左子树,找到节点 2; 3.访问节点 2 的左子树,找到节点 4; 4.由于访问节点 4 左子树失败,且也没有右子树,因此以节点 4 为根节点的子树遍历完成。 但节点 2 还没有遍历其右子树,因此现在开始遍历,即访问节点 5;
5.由于节点 5 无左右子树,因此节点 5 遍历完成,并且由此以节点 2 为根节点的子树也遍历完成。 现在回到节点 1 ,并开始遍历该节点的右子树,即访问节点 3;
6.访问节点 3 左子树,找到节点 6; 7.由于节点 6 无左右子树,因此节点 6 遍历完成,回到节点 3 并遍历其右子树,找到节点 7; 8.节点 7 无左右子树,因此以节点 3 为根节点的子树遍历完成,同时回归节点 1。 由于节点 1 的左右子树全部遍历完成,因此整个二叉树遍历完成;
|
3.2 图示遍历结果
1 2
| 因此,图 1 中二叉树采用先序遍历得到的序列为: 1 2 4 5 3 6 7
|
四 示例代码
4.1 递归实现
二叉树的先序遍历采用的是递归的思想,因此可以递归实现,其 C 语言实现代码为:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
| #include <stdio.h> #include <string.h> #define TElemType int //构造结点的结构体 typedef struct BiTNode{ TElemType data;//数据域 struct BiTNode *lchild,*rchild;//左右孩子指针 }BiTNode,*BiTree; //初始化树的函数 void CreateBiTree(BiTree *T){ *T=(BiTNode*)malloc(sizeof(BiTNode)); (*T)->data=1; (*T)->lchild=(BiTNode*)malloc(sizeof(BiTNode)); (*T)->rchild=(BiTNode*)malloc(sizeof(BiTNode)); (*T)->lchild->data=2; (*T)->lchild->lchild=(BiTNode*)malloc(sizeof(BiTNode)); (*T)->lchild->rchild=(BiTNode*)malloc(sizeof(BiTNode)); (*T)->lchild->rchild->data=5; (*T)->lchild->rchild->lchild=NULL; (*T)->lchild->rchild->rchild=NULL; (*T)->rchild->data=3; (*T)->rchild->lchild=(BiTNode*)malloc(sizeof(BiTNode)); (*T)->rchild->lchild->data=6; (*T)->rchild->lchild->lchild=NULL; (*T)->rchild->lchild->rchild=NULL; (*T)->rchild->rchild=(BiTNode*)malloc(sizeof(BiTNode)); (*T)->rchild->rchild->data=7; (*T)->rchild->rchild->lchild=NULL; (*T)->rchild->rchild->rchild=NULL; (*T)->lchild->lchild->data=4; (*T)->lchild->lchild->lchild=NULL; (*T)->lchild->lchild->rchild=NULL; }
//模拟操作结点元素的函数,输出结点本身的数值 void displayElem(BiTNode* elem){ printf("%d ",elem->data); } //先序遍历 void PreOrderTraverse(BiTree T){ if (T) { displayElem(T);//调用操作结点数据的函数方法 PreOrderTraverse(T->lchild);//访问该结点的左孩子 PreOrderTraverse(T->rchild);//访问该结点的右孩子 } //如果结点为空,返回上一层 return; } int main() { BiTree Tree; CreateBiTree(&Tree); printf("先序遍历: \n"); PreOrderTraverse(Tree); }
|
运行结果:
4.2 非递归实现
1 2
| 而递归的底层实现依靠的是栈存储结构,因此,二叉树的先序遍历既可以直接采用递归思想实现, 也可以使用栈的存储结构模拟递归的思想实现,其 C 语言实现代码为:
|
代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
| #include <stdio.h> #include <string.h> #define TElemType int int top=-1;//top变量时刻表示栈顶元素所在位置 //构造结点的结构体 typedef struct BiTNode{ TElemType data;//数据域 struct BiTNode *lchild,*rchild;//左右孩子指针 }BiTNode,*BiTree; //初始化树的函数 void CreateBiTree(BiTree *T){ *T=(BiTNode*)malloc(sizeof(BiTNode)); (*T)->data=1; (*T)->lchild=(BiTNode*)malloc(sizeof(BiTNode)); (*T)->rchild=(BiTNode*)malloc(sizeof(BiTNode)); (*T)->lchild->data=2; (*T)->lchild->lchild=(BiTNode*)malloc(sizeof(BiTNode)); (*T)->lchild->rchild=(BiTNode*)malloc(sizeof(BiTNode)); (*T)->lchild->rchild->data=5; (*T)->lchild->rchild->lchild=NULL; (*T)->lchild->rchild->rchild=NULL; (*T)->rchild->data=3; (*T)->rchild->lchild=(BiTNode*)malloc(sizeof(BiTNode)); (*T)->rchild->lchild->data=6; (*T)->rchild->lchild->lchild=NULL; (*T)->rchild->lchild->rchild=NULL; (*T)->rchild->rchild=(BiTNode*)malloc(sizeof(BiTNode)); (*T)->rchild->rchild->data=7; (*T)->rchild->rchild->lchild=NULL; (*T)->rchild->rchild->rchild=NULL; (*T)->lchild->lchild->data=4; (*T)->lchild->lchild->lchild=NULL; (*T)->lchild->lchild->rchild=NULL; } //前序遍历使用的进栈函数 void push(BiTNode** a,BiTNode* elem){ a[++top]=elem; } //弹栈函数 void pop( ){ if (top==-1) { return ; } top--; } //模拟操作结点元素的函数,输出结点本身的数值 void displayElem(BiTNode* elem){ printf("%d ",elem->data); } //拿到栈顶元素 BiTNode* getTop(BiTNode**a){ return a[top]; } //先序遍历非递归算法 void PreOrderTraverse(BiTree Tree){ BiTNode* a[20];//定义一个顺序栈 BiTNode * p;//临时指针 push(a, Tree);//根结点进栈 while (top!=-1) { p=getTop(a);//取栈顶元素 pop();//弹栈 while (p) { displayElem(p);//调用结点的操作函数 //如果该结点有右孩子,右孩子进栈 if (p->rchild) { push(a,p->rchild); } p=p->lchild;//一直指向根结点最后一个左孩子 } } } int main(){ BiTree Tree; CreateBiTree(&Tree); printf("先序遍历: \n"); PreOrderTraverse(Tree); }
|
运行结果
五 参考